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Overview

• Representing probability distributions
• Curse of dimensionality
• Crash course on graphical model(Bayesian networks)
• Neural models
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Road map and Challenges

• Representation: how do we model the joint distribution of many 
random variables?
• Need compact representation

• Learning: what is the right way to compare probability 
distributions?

• Inference: how do we invert the generation process (e.g., vision 
as inverse graphics)?
• Unsupervised learning: recover high-level descriptions 

(features) from raw data

Model family
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Learning a generative model

• We are given a training dataset of examples.

• Our goal is to learn the parameters of a generate model 𝜃 within 
a model family ℳ s.t. the model distribution 𝑝! is close to the 
distribution 𝑝"#$#

Model family
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Learning a generative model

• Mathematically, we can specify our goal as the following 
optimization problem: 

min
!∈ℳ

𝑑(𝑝"#$#, 𝑝!)
• where 𝑝"#$# is accessed via the dataset 𝐷 and 𝑑(⋅,⋅) is a notion of 

distance between probability distributions

Model family
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The purpose of generative model

• Generation: sample 𝒙'() should look like training set(sampling)
• Density estimation
• Unsupervised representation learning: learn what these images 

have in common features

• How to represent probability distribution?
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Basic discrete distributions

• Bernoulli distribution: (biased) coin flip
• 𝐷 = {𝐻, 𝑇}
• Specify 𝑝 𝑋 = 𝐻 = 𝜇. Then 𝑝 𝑋 = 𝑇 = 1 − 𝜇. 
• Write: 𝑋~𝐵𝑒𝑟(𝜇) or 𝑋 = 𝐵𝑒𝑟(𝑋|𝜇)
• Sampling: flip a (biased) coin

• Categorical distribution: (biased) 𝐾-sided dice
•  𝐷 = {1,2,⋯ , 𝐾}
• Specify 𝑝 𝑌 = 𝑖 = 𝜇* such that ∑*+,- 𝜇* = 1
• Write: 𝑌~𝐶𝑎𝑡(𝜇,, 𝜇., ⋯ , 𝜇-) or 𝑌 = 𝐶𝑎𝑡(𝑌|𝜇,, 𝜇., ⋯ , 𝜇-)
• Sampling: roll a (biased) dice
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Example of joint distribution

• Modeling a single pixel’s color. Three discrete random variables:
• Red channel 𝑅 ∈ 0,⋯ , 255
• Green channel 𝐺 ∈ 0,⋯ , 255
• Blue channel 𝐵 ∈ 0,⋯ , 255

• Sampling from the joint distribution 𝑟, 𝑔, 𝑏 ~𝑝(𝑅, 𝐺, 𝐵) randomly 
generates a color for the pixel
• How many parameters do we need to specify the joint 

distribution 𝑝 𝑅 = 𝑟, 𝐺 = 𝑔, 𝐵 = 𝑏 ?
Answer: 256 ⋅ 256 ⋅ 256 − 1
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Example of joint distribution

• Suppose 𝑋,, 𝑋., ⋯ , 𝑋" are binary (Bernoulli) random variables 
with 𝑑-dim binary image, i.e., 𝑥* ∈ 0,1 = 𝐵𝑙𝑎𝑐𝑘,𝑊ℎ𝑖𝑡𝑒

• How many possible images (states)? 
Answer: 2"

• Sampling from 𝑝(𝑥,, 𝑥.⋯ , 𝑥") generates an image
• How many parameters to specify the joint distribution over n 

binary pixels? (why? show it later)
Answer: 2" − 1
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Structure through independence

• If 𝑋,, 𝑋., ⋯ , 𝑋" are independent, then
𝑝(𝑥,, 𝑥.⋯ , 𝑥") = 𝑝(𝑥,)𝑝(𝑥.)⋯𝑝(𝑥")

• How many parameters specify the joint distribution 
𝑝(𝑥,, 𝑥.⋯ , 𝑥")?
• 2" entries can be described by just 𝑑 numbers

• However, independence assumption is too strong. Model not 
likely to be useful
• E.g., each pixel is chosen independently

Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

How many possible states? 2n

How many parameters to specify the joint distribution p(x1, . . . , xn)?
How many to specify the marginal distribution p(x1)? 1

2n entries can be described by just n numbers (if |Val(Xi )| = 2)!

Independence assumption is too strong. Model not likely to be useful
For example, each pixel chosen independently when we sample from it.
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Structure through conditional independence

• Back to general case, using Chain Rule
𝑝(𝑥,, 𝑥.⋯ , 𝑥")
= 𝑝(𝑥,)𝑝(𝑥. 𝑥, 𝑝(𝑥/|𝑥,, 𝑥.)⋯𝑝(𝑥"|𝑥,, 𝑥., ⋯ , 𝑥"0,)

• How many parameters? 1 + 2 +⋯2"0, = 2" − 1
• 𝑝 𝑥, requires 1 parameter
• 𝑝 𝑥.|𝑥, = 0 requires 1 parameter
• 𝑝 𝑥.|𝑥, = 1 requires 1 parameter
• ⋯

• 2" − 1 is still exponential. I.e., the chain rule does not give us 
anything

• Now suppose 𝑋*1, ⊥ 𝑋,, ⋯ , 𝑋*0,|𝑋* (conditional independence)
𝑝(𝑥,, 𝑥.⋯ , 𝑥")
= 𝑝(𝑥,)𝑝(𝑥. 𝑥, 𝑝 𝑥/ 𝑥,, 𝑥. ⋯𝑝 𝑥" 𝑥,, 𝑥., ⋯ , 𝑥"0,

• We only need 2𝑑 − 1 parameters
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Bayes Network

• Use conditional parameterization (instead of joint 
parametrization) 

• For each random variable 𝑥* , specify 𝑝(𝑥*|𝑥2!) for set 𝑥2! of 
random variables 𝐴* ⊂ 1,2,⋯ , 𝑑 ∖ 𝑖

• Then get joint parametrization as

𝑝 𝑥,, 𝑥., ⋯ , 𝑥" =Y
*

𝑝(𝑥*|𝑥2!)

• Need to guarantee it is a legal probability distribution
• It must correspond to a chain rule factorization, with factors 

simplified due to assumed conditional independencies 
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Bayes Network

• A Bayesian network is specified by a directed acyclic graph (DAG) 
𝐺 = (𝑉, 𝐸) with:
• One node 𝑖 ∈ 𝑉 for each random variable 𝑋*
• One conditional probability distribution (CPD) per node, 
𝑝(𝑥*|𝒙3#(*)), specifying the variable’s probability conditioned 
on its parents’ values

• Graph 𝐺 = 𝑉, 𝐸 is called the structure of the Bayesian Network
• Defines a joint distribution: 

𝑝 𝑥,, 𝑥., ⋯ , 𝑥" =Y
*∈6

𝑝 𝑥* 𝒙3# *
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Example

• Consider the following Bayesian network:

• What is its joint distribution?
𝑝 𝑑, 𝑖, 𝑔, 𝑠, 𝑙 = 𝑝 𝑑 𝑝 𝑖 𝑝 𝑔 𝑖, 𝑑 𝑝 𝑠 𝑖 𝑝(𝑙|𝑔)

Example

Consider the following Bayesian network:

What is its joint distribution?

p(x1, . . . xn) =
Y

i2V
p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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Bayesian network structure implies conditional 

independencies

• The joint distribution corresponding to the above BN factors as
𝑝 𝑑, 𝑖, 𝑔, 𝑠, 𝑙 = 𝑝 𝑑 𝑝 𝑖 𝑝 𝑔 𝑖, 𝑑 𝑝 𝑠 𝑖 𝑝(𝑙|𝑔)

• However, by the chain rule, any distribution can be written as 
𝑝 𝑑, 𝑖, 𝑔, 𝑠, 𝑙 = 𝑝 𝑑 𝑝 𝑖|𝑑 𝑝 𝑔 𝑖, 𝑑 𝑝 𝑠 𝑖, 𝑑, 𝑔 𝑝(𝑙|𝑔, 𝑑, 𝑖, 𝑠)

• Thus, we are assuming the following additional independencies: 
𝐷 ⊥ 𝐼, 𝑆 ⊥ {𝐷, 𝐺}|𝐼, 𝐿 ⊥ 𝐼, 𝐷, 𝑆 |𝐺
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Summary

• Bayesian networks given by (𝐺, 𝑝) where 𝑝 is specified as a set of 
local conditional probability distributions associated with 𝐺’s 
nodes 

• Efficient representation using a graph-based data structure 
• Computing the probability of any assignment is obtained by 

multiplying CPDs 
• Can sample from the joint by sampling from the CPDs according 

to the DAG ordering 
• Can identify some conditional independence properties by 

looking at graph properties 
• In this class, graphical models will be simple (e.g., only 2 or 3 

random vectors)
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Example: Naïve Bayes for single label prediction

• Classify e-mails as spam (𝑌 = 1) or not spam (𝑌 = 0)
• Let 1: 𝑑 index be the words in our vocabulary
• 𝑋* = 1 if word 𝑖 appears in an e-mail, and 0 otherwise
• E-mails are drawn according to some distribution 
𝑝 𝑌, 𝑋,, 𝑋., ⋯ , 𝑋"

• Words are conditionally independent given 𝑌:

𝑝 𝑦, 𝑥,, 𝑥., ⋯ , 𝑥" = 𝑝(𝑦)Y
*+,

"

𝑝(𝑥*|𝑦)

𝑋! 𝑋" 𝑋# 𝑋$⋯

𝑌



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Example: Naïve Bayes for classification

• Classify e-mails as spam (𝑌 = 1) or not spam (𝑌 = 0)
• Let 1: 𝑑 index be the words in our vocabulary
• 𝑋* = 1 if word 𝑖 appears in an e-mail, and 0 otherwise
• E-mails are drawn according to some distribution 
𝑝 𝑌, 𝑋,, 𝑋., ⋯ , 𝑋"

• Words are conditionally independent given 𝑌. Then,
𝑝 𝑦, 𝑥,, 𝑥., ⋯ , 𝑥" = 𝑝(𝑦)∏*+,

" 𝑝(𝑥*|𝑦)
• Estimate parameters from training data. Predict with Bayes rule:

𝑝 𝑌 = 1|𝑥,, 𝑥., ⋯ , 𝑥" =
𝑝(𝑌 = 1)∏*+,

" 𝑝(𝑥*|𝑌 = 1)
∑:+{<,,}𝑝(𝑌 = 𝑦)∏*+,

" 𝑝(𝑥*|𝑌 = 𝑦)
• Are the independence assumptions made here reasonable? 
• Philosophy: Nearly all probabilistic models are “wrong”, but many 

are nonetheless useful 
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Discriminative vs generative models

• Using chain rule 𝑝 𝑌, 𝑿 = 𝑝 𝑿 𝑌 𝑝 𝑌 = 𝑝 𝑌 𝑿 𝑝(𝑿)
• Corresponding Bayesian networks:

• All we need for prediction is 𝑝 𝑌 𝑿
• In the left model, we need to specify/learn both 𝑝 𝑌 and 𝑝 𝑿 𝑌 , 

then compute 𝑝 𝑌 𝑿 via Bayes rule 
• In the right model, it suffices to estimate just the conditional 

distribution 𝑝 𝑌 𝑿
• We are not interested in 𝑝(𝑿)!

𝑋

𝑌

Generative Discriminative

𝑋

𝑌
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⋯

Discriminative vs generative models

• Since 𝑿 is a random vector, chain rules will give
• 𝑝 𝑌, 𝑿 = 𝑝 𝑌 𝑝 𝑋, 𝑌 𝑝 𝑋. 𝑌, 𝑋, ⋯𝑝(𝑋"|𝑌, 𝑋,, ⋯ , 𝑋"0,)
• 𝑝 𝑌, 𝑿 = 𝑝 𝑋, 𝑝 𝑋. 𝑋, 𝑝 𝑋/ 𝑋,, 𝑋. ⋯𝑝(𝑌|𝑋,, ⋯ , 𝑋")

Generative Discriminative

𝑋! 𝑋# 𝑋$

𝑌

𝑋"

𝑋# 𝑋$

𝑌

𝑋" ⋯𝑋!
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Discriminative vs generative models

• We must make the following choices:
• Generative model: 𝑝 𝑌 is simple, but how do we 

parametrize 𝑝 𝑋*|𝑿?# * , 𝑌 ?
• Discriminative model: how do we parametrize 𝑝(𝑌|𝑿)? Here 

we assume we do not care about modeling 𝑝(𝑿) because 𝑿 is 
always given to us in a classification problem 
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Naïve Bayes

• Assume that
𝑋* ⊥ 𝑿0*|𝑌

⋯𝑋! 𝑋# 𝑋$

𝑌

𝑋" ⋯𝑋! 𝑋# 𝑋$

𝑌

𝑋"
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Logistic regression

• For the discriminative model, assume that
𝑝 𝑌 = 1 𝒙; 𝜶 = 𝑓(𝒙, 𝜶)

• where 𝒙@ = (𝑥,, ⋯ , 𝑥"), 𝜶@ = (𝛼<, 𝛼,, ⋯ , 𝛼")
• It is a parametrized function of 𝒙 (regression)
• Has to be between 0 and 1
• Depend in some simple but reasonable way on 𝑥,, ⋯ , 𝑥"
• Completely specified by a vector 𝜶 of 𝑑 + 1 parameters

• Linear dependence: let 𝑧 𝜶, 𝒙 ≔ 𝛼< + ∑*+," 𝛼*𝑥*
• Then 

𝑝 𝑌 = 1 𝒙; 𝜶 = 𝜎(𝑧 𝜶, 𝒙 )
• where 𝜎 𝑧 = 1/(1 + 𝑒0A) is called the logistic(sigmoid) function
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Logistic regression

• Linear dependence: let 𝑧 𝜶, 𝒙 ≔ 𝛼< + ∑*+," 𝛼*𝑥*
• Then 

𝑝 𝑌 = 1 𝒙; 𝜶 = 𝜎(𝑧 𝜶, 𝒙 )
• where 𝜎 𝑧 = 1/(1 + 𝑒0A) is called the logistic function

• Decision boundary 𝑝 𝑌 = 1 𝒙; 𝜶 is linear in 𝒙
• Equal probability contours are hyperplanes
• Probability rate of change has very specific form (third plot) 

Logistic regression

Linear dependence: let z(↵, x) = ↵0 +
Pn

i=1 ↵ixi .Then,
p(Y = 1 | x;↵) = �(z(↵, x)), where �(z) = 1/(1 + e

�z) is called the
logistic function

1 Decision boundary p(Y = 1 | x;↵) > 0.5 is linear in x
2 Equal probability contours are straight lines

3 Probability rate of change has very specific form (third plot)
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Remark: Logistic regression

• Losigtic model does not assume 𝑋* ⊥ 𝑿0*|𝑌, unlike Naïve Bayes
• This can make a big difference in many applications
• E.g., in spam classification, let 𝑋, = 1 [“bank” in e-mail] and 
𝑋. = 1 [“account” in e-mail] 

• Regardless of whether spam, these always appear together, 
i.e., 𝑋, = 𝑋.

• Learning in Naïve Bayes results in 𝑝 𝑋, 𝑌 = 𝑝 𝑋. 𝑌 . Thus, 
Naïve Bayes double counts the evidence
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Neural Models for discriminate models

• We assume that
𝑝 𝑌 = 1 𝒙; 𝜶 = 𝑓(𝒙, 𝜶)

• Linear dependence:
• Let 𝑧 𝜶, 𝒙 ≔ 𝛼< + ∑*+," 𝛼*𝑥*
• 𝑝 𝑌 = 1 𝒙; 𝜶 = 𝜎(𝑧 𝜶, 𝒙 ) where 𝜎 𝑧 = 1/(1 + 𝑒0A)
• Dependence might be too simple

• Non-linear dependence: let 𝒉 𝑊,𝒃, 𝒙 = 𝑔(𝑊𝒙 + 𝒃) be a non-
linear transformation of the inputs (features)

𝑝'(BC#D 𝑌 = 1 𝑥; 𝜶,𝑊, 𝒃 = 𝜎 𝑧 𝜶, 𝒉 𝑊, 𝒃, 𝒙

= 𝜎 𝛼< +n
*+,

E
𝛼*ℎ*

• More flexible and parameters: 𝜶,𝑊, 𝒃
• Can repeat multiple times to get a neural network
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Continuous random variables

• If 𝑋 is a continuous random variable, we can usually represent it 
using its probability density function 𝑝F: ℝ → ℝ1

• However, we cannot represent this function as a table anymore
• Typically consider parameterized densities: 
• Gaussian: 𝑋 = 𝑁 𝑋 𝜇, 𝜎 if 𝑝F 𝑥 = ,

G .H
𝑒0 I0J "/.G"

• Uniform: 𝑋 = 𝑈 𝑋 𝑎, 𝑏 if 𝑝F 𝑥 = ,
L0#

1[#NINL]
• If 𝑋 is a continuous random vector, we can usually represent it 

using its joint probability density function: 

• Gaussian: 𝑝F 𝒙 = ,
.H #|Q|

exp − ,
. 𝒙 − 𝝁 @Σ0, 𝒙 − 𝝁
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Continuous random variables

• We can still use Bayesian networks with continuous (and discrete) 
variables

• Mixture of 2 Gaussian: Bayes net 𝑍 → 𝑋 with factorization 
𝑝R,F 𝑧, 𝑥 = 𝑝R 𝑧 𝑝F|R 𝑥 𝑧 and
• 𝑍 = 𝐵𝑒𝑟 𝑍 𝜇
• 𝑝(𝑋 𝑍 = 0) = 𝑁 𝑋 𝜇<, 𝜎< , 𝑋 𝑍 = 1 = 𝑁 𝑋 𝜇,, 𝜎,
• The parameters are 𝜇, 𝜇<, 𝜎<, 𝜇,, 𝜎,

• Variational autoencoder: Bayes net 𝑍 → 𝑋 with factorization 
𝑝R,F 𝑧, 𝑥 = 𝑝R 𝑧 𝑝F|R 𝑥 𝑧 and 
• 𝑍 = 𝑁 𝑍|0, 𝐼
• 𝑝(𝑋 𝑍 = 𝑧) = 𝑁 𝑋 𝜇! 𝑧 , 𝑒G$ A 𝐼 where 𝜇! and 𝜎S are 

neural networks with parameters (weights) 𝜃, 𝜙 respectively
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